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Abstract  
There is a variety of measures of symmetry (or asymmetry) for convex 
sets that have been studied over the years, see Grûnbaum [1] and 
Minkowski [3]. These measures arise naturally in the complexity theory 
of interior - point methods. In this work we present a method for 
computing an approximation of the symmetry and a symmetry point of the 
polyhedral sets. 
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1. INTRODUCTION 
Given a closed convex set S  and a point x , define the symmetry of S  about x  as 

follows:  
  },)(|0max{),( SySyxxSxsym                                                  (1.1) 

which intuitively states that ),( Sxsym  is the largest scalar   such that every point 

Sy  can be reflected through x  by the factor   and still lie in S. The symmetry value 

of S  then is:  
),(max)( Sxsym

Sx
Ssym


                                                                                               (1.2) 

and *x  is a symmetry point of S  if *x  achieves the above supremum (also called a 
�critical point� in [1],[2] and [3]). S  is symmetric if 1)( Ssym .  

We present a simple example. Let be baRba  ,,  and ],[ baS  . We show how 
we can determinate SxSxsym ),,(  and )(Ssym . Let be 0  so that Syxx  )( ,
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We will compute ),(max)( Sxsym
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symmetric ) and 
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* ba
x


  is a symmetry point of S .   

Symmetric convex sets play an important role in convexity theory. There are 
many other geometric properties of convex bodies S  that are also connected to )(Ssym . 

Notice that ),( Sxsym  and )(Ssym  are invariant under invertible affine transformation 

and change in norm. The relevance of ),( Sxsym  has been revived in the complexity 
theory of interior - point methods for convex optimization, see Nesterov and Nemirovskii 
[4] and Renegar [5].  
 
2.  GENERAL PROPERTIES OF ),( Sxsym  AND )(Ssym   

We make the following assumption: S  is a convex body, i.e., S  is a nonempty 
closed bounded convex set with a nonempty interior. We assume that S  has an interior. 
Notice that the definition of ),( Sxsym  given in (1.1) is equivalent to the following �set-

containment� definition:  
)}()(|0sup{),( xSSxSxsym                                                                     (2.1) 

The general properties from the ),( Sxsym  will be shown without demonstration 
in the following propositions. 
Proposition 2.1 If  S  is a nonempty closed bounded convex set with a nonempty interior, 

]1,0[:),(  SSsym  is a continuous quasiconcave function. 

Proof. See [1] 



Proposition 2.2 If  S  is a nonempty closed bounded convex set with a nonempty interior, 

a symmetric set centered at the origin, and 
S

  denote the norm induced by S . Then, 

for every Sx , 
Sx
S

x
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
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),( . 

Proof. See [1]   
Proposition 2.3 If  S  is a nonempty closed bounded convex set with a nonempty interior, 
a symmetric set centered at the origin. Then ),( Ssym   is a logconcave function in S .  
Proof. See [1]  

Proposition 2.4 Let nRTS ,  be convex bodies, and let be Sx  and Ty . Then:  
If TSx  , 

)},(),,(min{),( TxsymSxsymTSxsym                                                                    (2.2) 

)},(),,(min(),( TysymSxsymTSyxsym                                                               (2.3) 

)},(),,(min{)),,(( tysymSxsymTSyxsym                                                                (2.4) 
Let be )(A be an affine transformation. Then: 

),())(),(( SxsymSAxAsym                                                                                        (2.5) 

with equality if )(A  is invertible.  
Proof. See [1]  
 
3.  COMPUTING A SYMMETRY POINT OF S  WHEN S  IS 
POLYHEDRAL  

Our interest lies in computing an  -approximate symmetry point of S , which is a 
point Sx , that satisfies: )()1(),( SsymSxsym  . We assume that 

},,|{ mnmn RbRAbAxRxS    i.e., S  is polyhedral. We present a method for 

computing an  -approximate symmetry point of S . The method involves solving 1m  
linear programs each of which involves m  linear inequalities in n  unrestricted variables.  

Define the following scalar quantities mii ,,1,*  : 

)(max* xAi
x

i                                                                                                               (3.1) 

bAx   

and notice that *
iib   is the range of xAi  over Sx  if the ith constraint is not strictly 

redundant on S . We compute mii ,,1,*   by solving m  linear programs whose 

feasible region is exactly S . The following proposition shows that if we 

know mii ,,1,*  , then we are able to compute ),( Sxsym  for any Sx .  
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Proof. Let be ),( Sxsym  and 
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Proposition 3.1 can be used to create another single linear program to compute 

)(Ssym  as follows. Let be ),,( **
1

*
m   and consider the following linear program 

that uses *  in the data:  
)(max 


                                                                                                                           (3.3) 

bbAx  )( * . 

Proposition 3.2 Let be ),( ** x be an optimal solution of the linear program (3.3). Then 

*x  is a symmetry point of S  and 
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analogous.  
From the propozitions 3.1 and 3.2 results the following method for computing 

)(Ssym  and a symmetry point *x :  
 



Step 1 For mi ,,1 , approximately solve the linear program (3.1), stopping each linear 
program when a feasible solution x  is computed for which the duality gap g  satisfies 

 
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xAb
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
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Step 2 Let be ),,( 1 m  . Approximately solve the linear program 
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                                                                                                                           (3.4)  
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Notice that this method requires that the LP solver computes primal and dual 
feasible points (or simply primal feasible points and the duality gap) at each of its 
iterations; such a requirement is satisfied, for example, by a standard feasible interior - 
point method.  

In order to prove a complexity bound for the method, we will assume that S  is 
bounded and has an interior. 

A standard interior - point method for solving (3.1) uses Newton�s method to 
compute successive  -approximate solutions for a decreasing sequence of values of 

barrier parameter 0 . Is well know [6], [7] the following result: 

Theorem 1 Suppose that 
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  and that  000 ,, zsx  is a given  - approximate solution 

for the barrier parameter 00  . If  zsx ,,  is a  - approximate solution for the barrier 
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Proof. See [6]. 

Proposition 3.3 Let )1.0,0(  be given, set
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Proof. For a given mi ,,1  let g  denote the duality gap computed in the stopping 
criterion of Step 1 of the method. Then  
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Proposition 3.4 Let be )1.0,0(  be given, set
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method is executed, with output  ,x . Then 
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Proof. Let *  denote the optimal objective value of (3.3), and notice that *   implies 

that **   . Let g  be computed in Step 2 of the method. It follows from the stopping 
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Proposition 3.5 Let )1.0,0(  be given and set  
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iterations of Newton�s method. 
Proof. Step 1 of method is used to approximately solve each of the linear programs (3.1) 
for mi ,,1 . Let us fix a given i. We will apply to (3.1) a standard feasible path-

following interior - point method. A triplet  zsx ,,  together with a path parameter   is a 
 -approximate solution for   for the linear program (3.1) if the following system is 
satisfied 
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Now let ax  denote the given 
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  i
a
i ss  1 , and substituting this into the ratio bound yields: 

 
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
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


  

so 


 m42
lnln

0

  and so    


 m
mm

42
ln42ln42

0

 , using 1.0 , 
1.4


   

and  Theorem 1.  

Proposition 3.6 Let )1.0,0(  be given, 3m  and set  
1.4


  . Suppose that ax  is an 

8

1
 -approximate analytic center of S . Then starting with ax , the stopping criterion of 

each linear program in Step 2 of method will be reached in no more than 

  



 


m

m
6

ln42  iterations of Newton�s method. 

Proof. The proof is analogous with proposition 3.6. 

Proposition 3.7 Let )1.0,0(  be given and set  
1.4


  . Suppose that ax  is an 

8

1
 -

approximate analytic center of S . Then starting with ax  and using a standard feasible 
interior - point method to solve each of the linear programs in Steps 1 and 2, the method 
will compute an  -approximate symmetry point of S  in no more than 

    



 



 


m

m
m

mm
6

ln42
42

ln42  total iterations of Newton�s method. 

Proof. The propositions 3.3 and 3.4 show that the method indeed computes an  -
approximate symmetry point of S . From the propositions 3.5 and 3.6 it follows that the 
total number of Newton steps computed by the method is no more than 

    



 



 


m

m
m

mm
6

ln42
42

ln42  since 31 nm  and )1.0,0( . 
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