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Abstract  
There is a variety of measures of symmetry (or asymmetry) for convex 
sets that have been studied over the years, see Grûnbaum [1] and 
Minkowski [3]. These measures arise naturally in the complexity theory 
of interior - point methods. In this work we present a method for 
computing an approximation of the symmetry and a symmetry point of the 
polyhedral sets. 
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1. INTRODUCTION 
Given a closed convex set S  and a point x , define the symmetry of S  about x  as 

follows:  
  },)(|0max{),( SySyxxSxsym                                                  (1.1) 

which intuitively states that ),( Sxsym  is the largest scalar   such that every point 

Sy  can be reflected through x  by the factor   and still lie in S. The symmetry value 

of S  then is:  
),(max)( Sxsym

Sx
Ssym


                                                                                               (1.2) 

and *x  is a symmetry point of S  if *x  achieves the above supremum (also called a 
�critical point� in [1],[2] and [3]). S  is symmetric if 1)( Ssym .  

We present a simple example. Let be baRba  ,,  and ],[ baS  . We show how 
we can determinate SxSxsym ),,(  and )(Ssym . Let be 0  so that Syxx  )( ,
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We will compute ),(max)( Sxsym
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  is a symmetry point of S .   

Symmetric convex sets play an important role in convexity theory. There are 
many other geometric properties of convex bodies S  that are also connected to )(Ssym . 

Notice that ),( Sxsym  and )(Ssym  are invariant under invertible affine transformation 

and change in norm. The relevance of ),( Sxsym  has been revived in the complexity 
theory of interior - point methods for convex optimization, see Nesterov and Nemirovskii 
[4] and Renegar [5].  
 
2.  GENERAL PROPERTIES OF ),( Sxsym  AND )(Ssym   

We make the following assumption: S  is a convex body, i.e., S  is a nonempty 
closed bounded convex set with a nonempty interior. We assume that S  has an interior. 
Notice that the definition of ),( Sxsym  given in (1.1) is equivalent to the following �set-

containment� definition:  
)}()(|0sup{),( xSSxSxsym                                                                     (2.1) 

The general properties from the ),( Sxsym  will be shown without demonstration 
in the following propositions. 
Proposition 2.1 If  S  is a nonempty closed bounded convex set with a nonempty interior, 

]1,0[:),(  SSsym  is a continuous quasiconcave function. 

Proof. See [1] 



Proposition 2.2 If  S  is a nonempty closed bounded convex set with a nonempty interior, 

a symmetric set centered at the origin, and 
S

  denote the norm induced by S . Then, 

for every Sx , 
Sx
S

x
Sxsym
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Proof. See [1]   
Proposition 2.3 If  S  is a nonempty closed bounded convex set with a nonempty interior, 
a symmetric set centered at the origin. Then ),( Ssym   is a logconcave function in S .  
Proof. See [1]  

Proposition 2.4 Let nRTS ,  be convex bodies, and let be Sx  and Ty . Then:  
If TSx  , 

)},(),,(min{),( TxsymSxsymTSxsym                                                                    (2.2) 

)},(),,(min(),( TysymSxsymTSyxsym                                                               (2.3) 

)},(),,(min{)),,(( tysymSxsymTSyxsym                                                                (2.4) 
Let be )(A be an affine transformation. Then: 

),())(),(( SxsymSAxAsym                                                                                        (2.5) 

with equality if )(A  is invertible.  
Proof. See [1]  
 
3.  COMPUTING A SYMMETRY POINT OF S  WHEN S  IS 
POLYHEDRAL  

Our interest lies in computing an  -approximate symmetry point of S , which is a 
point Sx , that satisfies: )()1(),( SsymSxsym  . We assume that 

},,|{ mnmn RbRAbAxRxS    i.e., S  is polyhedral. We present a method for 

computing an  -approximate symmetry point of S . The method involves solving 1m  
linear programs each of which involves m  linear inequalities in n  unrestricted variables.  

Define the following scalar quantities mii ,,1,*  : 

)(max* xAi
x

i                                                                                                               (3.1) 

bAx   

and notice that *
iib   is the range of xAi  over Sx  if the ith constraint is not strictly 

redundant on S . We compute mii ,,1,*   by solving m  linear programs whose 

feasible region is exactly S . The following proposition shows that if we 

know mii ,,1,*  , then we are able to compute ),( Sxsym  for any Sx .  

Proposition 3.1 Let },,|{ mnmn RbRAbAxRxS    be given. For each Sx ,  
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Proof. Let be ),( Sxsym  and 
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On the other hand for all Sy  and mi ,,1  we have: 
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Proposition 3.1 can be used to create another single linear program to compute 

)(Ssym  as follows. Let be ),,( **
1

*
m   and consider the following linear program 

that uses *  in the data:  
)(max 


                                                                                                                           (3.3) 

bbAx  )( * . 

Proposition 3.2 Let be ),( ** x be an optimal solution of the linear program (3.3). Then 

*x  is a symmetry point of S  and 
*

*

1
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Ssym . 

Proof. Suppose that ),( x  is a feasible solution of (3.3). Then iiii bbxA  )( * , 
mi ,,1 . 
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. Then from Proposition 3.1 follows that 
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Ssym . The reverse inequality follows 

analogous.  
From the propozitions 3.1 and 3.2 results the following method for computing 

)(Ssym  and a symmetry point *x :  
 



Step 1 For mi ,,1 , approximately solve the linear program (3.1), stopping each linear 
program when a feasible solution x  is computed for which the duality gap g  satisfies 

 
1.4

xAb
g ii 


. Set xAii  .  

Step 2 Let be ),,( 1 m  . Approximately solve the linear program 

)(max 


                                                                                                                           (3.4)  

bbAx  )(  

stopping when a feasible solution  ,x  is computed for which the duality gap g  

satisfies   
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Notice that this method requires that the LP solver computes primal and dual 
feasible points (or simply primal feasible points and the duality gap) at each of its 
iterations; such a requirement is satisfied, for example, by a standard feasible interior - 
point method.  

In order to prove a complexity bound for the method, we will assume that S  is 
bounded and has an interior. 

A standard interior - point method for solving (3.1) uses Newton�s method to 
compute successive  -approximate solutions for a decreasing sequence of values of 

barrier parameter 0 . Is well know [6], [7] the following result: 

Theorem 1 Suppose that 
4

1
  and that  000 ,, zsx  is a given  - approximate solution 

for the barrier parameter 00  . If  zsx ,,  is a  - approximate solution for the barrier 

parameter  0,0    then such a solution can be computed in at most 

  










 0

ln42 m  iterations of Newton method, and the duality gap associated with 

variables  zsx ,,  satisfy mg
4

5
 . 

Proof. See [6]. 

Proposition 3.3 Let )1.0,0(  be given, set
1.4


  , and suppose that Step 1 of the 

method is executed. Then ),,( 1 m   satisfies *** )( iiiii b   , 

mi ,,1 . Furthermore, for any given Sx , let be 
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Proof. For a given mi ,,1  let g  denote the duality gap computed in the stopping 
criterion of Step 1 of the method. Then  

)( ****
iiiiii bg                                                                                  (3.6) 

Adding ib  in all members of (3.6) implies that  

      iiiiii bbb  **1                                                                               (3.7) 

For a given Sx  let be ),( Sxsym  and 
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Proposition 3.1 we have  



























 1
min

*,,1 xA

xAb

ii

ii

mi 
                                                                                        (3.8) 

Notice that *
ii    for all i , whereby   , which implies that 
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We also see from (3.8) that 5.00  . Next notice that (3.6) implies that    1 . 
Therefore  
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Proposition 3.4 Let be )1.0,0(  be given, set
1.4


  , and suppose that Step 1 of the 

method is executed, with output  ,x . Then 
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1
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                                                                      (3.9) 

Proof. Let *  denote the optimal objective value of (3.3), and notice that *   implies 

that **   . Let g  be computed in Step 2 of the method. It follows from the stopping 
criterion in Step 2 that  

        111 **g                                                                      (3.10) 
From Proposition 3.3 we have  
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Proposition 3.5 Let )1.0,0(  be given and set  
1.4


  . Suppose that ax  is a 

8

1
 -

approximate analytic center of S . Then starting with ax , the stopping criterion of each 

linear program in Step 1 of  method will be reached in no more than   
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iterations of Newton�s method. 
Proof. Step 1 of method is used to approximately solve each of the linear programs (3.1) 
for mi ,,1 . Let us fix a given i. We will apply to (3.1) a standard feasible path-

following interior - point method. A triplet  zsx ,,  together with a path parameter   is a 
 -approximate solution for   for the linear program (3.1) if the following system is 
satisfied 
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Now let ax  denote the given 
8

1
 -approximate analytic center of the system bAx  . 

Then there exists (or it is easy to compute) multipliers az  together with slacks 0as  
that satisfy the following system:  
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Define: 

   a
i

ia
i

aa sezssxzsx 8,8,,,,, 0000                                                                         (3.13) 

where ie  is the thi  unit vector in mR . It is then straightforward to show that (3.13) is an 

4

1
-approximate solution of (3.11) for the parameter 0 , so we can start the interior - 

point method with (3.13). We next bound the value of the parameter   when the 

stopping criterion is achieved. Let  ,,, zsx  denote the values of  ,,, zsx  when the 
algorithm stops. To keep the analysis simple, we assume that the stopping criterion is met 

exactly. We therefore have that:   iii sxAbgm  
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5
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However, noting that:  
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and  Theorem 1.  

Proposition 3.6 Let )1.0,0(  be given, 3m  and set  
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  . Suppose that ax  is an 
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 -approximate analytic center of S . Then starting with ax , the stopping criterion of 

each linear program in Step 2 of method will be reached in no more than 
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Proof. The proof is analogous with proposition 3.6. 

Proposition 3.7 Let )1.0,0(  be given and set  
1.4


  . Suppose that ax  is an 
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approximate analytic center of S . Then starting with ax  and using a standard feasible 
interior - point method to solve each of the linear programs in Steps 1 and 2, the method 
will compute an  -approximate symmetry point of S  in no more than 
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Proof. The propositions 3.3 and 3.4 show that the method indeed computes an  -
approximate symmetry point of S . From the propositions 3.5 and 3.6 it follows that the 
total number of Newton steps computed by the method is no more than 
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