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Abstract

There is a variety of measures of symmetry (or asymmetry) for convex
sets that have been studied over the years, see Grinbaum [1] and
Minkowski [3]. These measures arise naturally in the complexity theory
of interior - point methods. In this work we present a method for
computing an approximation of the symmetry and a symmetry point of the
polyhedral sets.
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1. INTRODUCTION
Given aclosed convex set S and apoint x, define the symmetry of S about x as
follows:

sym(x, S) = max{a = 0|X+a(X—Yy) € S, (V)y e S (21)
which intuitively states that sym(x,S) is the largest scalar o such that every point
y € S can bereflected through x by the factor « and till liein S. The symmetry va ue
of S thenis:

sym(S) = max sym(x, S) (1.2)
Xe

and X isasymmetry point of S if X achieves the above supremum (aso caled a
“critical point”in[1],[2] and[3]). S issymmetricif sym(S) =1.

We present asimple example. Let be a,be R,a<b and S=[a,b]. We show how
we can determinate sym(x, S),xe S and sym(S) . Letbe ¢ >0 sothat X+ a(x—-y)eS,



(V)yeS. Results that a<x+a(x—b)<x+a(x-y)<x+a(x—a)<b so aga_z
X_
andaﬁb . Then ae{o mln{u,uH.La be
X—a x-b x-a
f(x)_a—x_b—x_(b—a)(a+b—2x))
x-b x-a  (x-b)x-a)
Results that
a-x . a+b
b if X€|:a,T:|
X_
sym(x, S) = mln{u,ﬂ}: (1.3)
X-b x-a b-x . a+b
— if xe b
X—a 2
We will compute sym(S)= max sym(x,S). Using (1.3), let be fl:[a,a%b}%R,
Xxe$S
a+b b-x . .
f(x)_— adf,:|—,b|>R, f,(X)=——. It is obvious that
-b 2 X—a

0< f,(x) <1= fl(a;bj and 0<f,(x)<1. So wm(S):magwm(x,S):l (S is
Xe

symmetric) and X’ :aLZb isasymmetry point of S.

Symmetric convex sets play an important role in convexity theory. There are
many other geometric properties of convex bodies S that are also connected to sym(S) .
Notice that sym(x,S) and sym(S) are invariant under invertible affine transformation

and change in norm. The relevance of sym(x,S) has been revived in the complexity

theory of interior - point methods for convex optimization, see Nesterov and Nemirovskii
[4] and Renegar [5].

2. GENERAL PROPERTIES OF sym(x,S) AND sym(S)

We make the following assumption: S is a convex body, i.e., S is a nonempty
closed bounded convex set with a nonempty interior. We assume that S has an interior.
Notice that the definition of sym(x,S) givenin (1.1) is equivaent to the following “set-
containment” definition:
sym(x, S) = sup{a > Ola(x—S) < (S-x)} (2.1)

The genera properties from the sym(x, S) will be shown without demonstration
in the following propositions.

Proposition 2.1 If S isanonempty closed bounded convex set with a nonempty interior,
sym(,, S) : S —[0]] isa continuous quasi concave function.
Proof. See[1]



Proposition 2.2 If S isanonempty closed bounded convex se with a nonempty interior,
a symmetric set centered at the origin, and || denote the norm induced by S. Then,

1-[ds

1+|Ng
Proof. See[1]
Proposition 2.3 If S isanonempty closed bounded convex set with a nonempty interior,
asymmetric set centered at the origin. Then sym(-,S) isalogconcave functionin S.
Proof. See[1]
Proposition 2.4 Let S, T R" be convex bodies, andletbe xe S and y e T . Then:
If xeSNT,

forevery xe S, sym(x,S) =

sym(X,SNT) > min{sym(x, S), sym(x,T)} (2.2)
sym(x+y,S+T) = min(sym(x, S), sym(y,T)} (23)
sym((x, y), SxT) = min{sym(x, S), sym(y, t)} 24
L et be A(-) be an affine transformation. Then:

SYM(A(x), A(S)) = sym(x, S) (25)
with equality if A(") isinvertible

Proof. See[1]

3. COMPUTING A SYMMETRY POINT OF S WHEN S IS
POLYHEDRAL

Our interest liesin computing an ¢ -approxi mate symmetry point of S, whichisa
point xeS, that saisfies symM(xS)>(1-¢)sym(S). We assume that
S={xeR"|Ax<b,AcR™",beR™} i.e, S is polyhedral. We present a method for

computing an ¢ -approximate symmetry point of S. The method involves solving m+1
linear programs each of which involves m linear inequalitiesin n unrestricted variables.

Define the following scalar quantities&i* ,i=1...,m:
8, =max(-AX) 3.9
Ax<b
and notice that b, + &, istherange of Ax over xeS if the i™ congtraint is not strictly

redundant on S. We compute &, ,i=1,...,m by solving m linear programs whose
feasible region is exactlyS. The following proposition shows that if we
know5i*, i=1,...,m, thenweareableto compute sym(x,S) for any xe S.

Proposition 3.1 Let S={xe R"|Ax<b,Ac R™",be R"} begiven. For each xe S,

ym(x,9) = Ti.?m{;;—x} 32)



Proof. Let be o =sym(x,S) and g = min {M} . Wewill proof that =3 .
i=1...,m 5i +AiX

For dl yeS, x+a(x-y)eS, so AX+a(x-y)<b and 6]
Ax+aAx+a(-Ay)<b, i=1...,m. This implies that Ax+aAx+ad, <b and

a < min {M} andso a < f
i=1...,m 5i +AiX

On the other hand for all yeS and i=1,...,m we have ﬂgw, for all

o, +AX
i=1...m, s0 b -Ax>pB(Ax+6)2p(Ax-Ay), i=1..,m. Thus
AX+ PAX+ P(-AY)<b and so A(X+ S(x-Yy))<b, i=1...,m which implies that

a>f.Thus a = that means sym(x, S) = Tin{b‘ _A‘X}.

5, + Ax

Proposition 3.1 can be used to create another single linear program to compute
sym(S) as follows. Let be 6" = (5, ,...,5,,) and consider the following linear program
that uses §~ in the data:
mgx(@) (3.3)
AX+0(5" +b)<b.
Proposition 3.2 Let be (x",0") be an optimal solution of the linear program (3.3). Then

*

P

X" isasymmetry point of S and sym(S) = 1 0

Proof. Suppose that (X,6) is a feasible solution of (3.3). Then AX+6 (5, +b)<hb,,
i=1...,m.

Because 5, =max(-AXx) and AX<b, then §; >-AX>-b,i=1...,m,s0 6, +b >0

,i—lz i i_—1:5i +A‘z(.Wehave
0 b - AX b - AX

. Then from Propaosition 3.1 follows that

and that implies § <2 —AX 1, 0 +b

10,9 +AX +A12( and so —— —b'*
0 b - AX 1-6 65 +

*

The reverse inequality follows

. "

sym(X, 8)21'95, which implies that wm(S)zl'g

and ogous.
From the propozitions 3.1 and 3.2 results the following method for computing

sym(S) and a symmetry point X :



Step 1 For i =1,...,m, approximately solve the linear program (3.1), stopping each linear

program when a feasible solution X is computed for which the duality gap g satisfies

_ &b -AX) = <
<EOTAY o 5 AR,
g a1 = A
Step 2Le be 5 =(5,,...,6,,) . Approximately solve the linear program

max(0) (34)
Ax+6(5 +b)<b

stopping when a feasible solution (25) is computed for which the duality gap g
satisfies 0 > (§+ 5(1_411)' Then X will be an ¢ -approximate symmetry point of S

7-z) 7
d ——=< S)< — .
an 1-6 ym(S) 1-6

Notice that this method requires that the LP solver computes primal and dual
feasible points (or simply prima feasible points and the duality gap) at each of its
iterations; such a requirement is satisfied, for example, by a standard feasible interior -
point method.

In order to prove a complexity bound for the method, we will assume that S is
bounded and has an interior.

A standard interior - point method for solving (3.1) uses Newton’s method to
compute successive f -approximate solutions for a decreasing sequence of values of

barrier parameter 1 > 0. Iswdl know [6], [7] the following result:
Theorem 1 Suppose that S :% and that (xo,so, zo) isagiven S - approximate sol ution
for the barrier parameter 1° > 0. If ()‘( 5, 2) isa S - approximate solution for the barrier

parameter ﬁe(o, yo) then such a solution can be computed in a most

0
{(2+ 4\/ﬁ)ln#—} iterations of Newton method, and the duality gap associated with
U

variables (X,§,z) satisfy gs%mﬁ.
Proof. See [6].

Proposition 3.3 Let £<(0,0.1) be given, set§:4—1, and suppose that Step 1 of the

method is executed. Then & =(5,,...,6,) satisiess, —&(5; +b)<d, <4,

i=1,...,m. Furthermore, for any givenxe S, let be 8 = min M . Then
i=1,...,m 5i +AX

0 (1-3¢ 0
— <sym(x,S)<—— 3.5
1—9(1—5) ym(x.5) 1-0 (39)



Proof. For agiven i=1...,m le § denocte the duality gap computed in the stopping
criterion of Step 1 of the method. Then

5 28,26, —g=5, —£(5, +b) (3.6)
Adding b, inal members of (3.6) implies that
@-z)o; +b)< (5 +b)<(5" +b) 3.7)

For a given xe S let be a=sym(x,S) and §:.Tin {M} Then from
i=1,...,m

o, + AX
Proposition 3.1 we have

o= min {DZAXL_ 0 (38)
Lm| 5"+ Ax| 1-0

Noticethat &, <&, forall i, whereby 6 >6 , which implies that a:lee_ s%

We a'so see from (3.8) that 0<6 <0.5. Next notice that (3.6) impliesthat 8 >6(1-z)

Therefore

_0a-2)|,, "1-5 |, 0Q-&)(, &\, 0 (, 2 \_ 0 1-3
1 1 1 1-0 1-¢
Proposition 3.4 Let be £ <(0,0.1) be given, sete :411, and suppose that Step 1 of the

method is executed, with output (x,6 ). Then
- 1-5¢
sym(x, S)> sym(S)

—>(L-£)sym(S) (39)
1-¢

Proof. Let " denote the optimal objective value of (3.3), and noticethat 6 <& implies

that 0" >0 . Let § be computed in Step 2 of the method. It follows from the stopping

criterion in Step 2 that

0=0+g)-2)20"(1-7)>0"(1-7) (3.10)

From Proposition 3.3 we have

sym(x, S)>

6 1-35_ 6 1-
1-0 1-¢ 1-6" 1-
3% 1/2 ~
g 1—1/2+(1/2)§_Sy

> sym(S)(1- 5)11__

> sym(S) - > (1- &)sym(S)



Proposition 3.5 Let £<(0,0.1) begivenand set ¢ :411. Suppose that x* isa S ::—;—
approximate analytic center of S. Then starting with x*, the stopping criterion of each
42m}

linear programin Step 1 of method will be reached in no more than [(2+ M)In—
&

iterations of Newton’s method.
Proof. Step 1 of method is used to approximately solve each of the linear programs (3.1)
for i=1,...,m. Let us fix a given i. We will apply to (3.1) a standard feasible path-

following interior - point method. A triplet (x, S, z) together with a path parameter p isa
S -approximate solution for w for the linear program (3.1) if the following system is
satisfied
Ax+s=Db,s>0
ATz=-A (3.12)

o
u

Now let x* denote the given ::—é—approxi mate ana ytic center of the system Ax<b.

Then there exists (or it is easy to compute) multipliers z* together with slacks s® >0
that satisfy the following system:

A% +s?=Db
ATz =0 . (3.12)
a—a
sz g <
Define:
(xo,so, zo,yo): (xa,sa 8stz—¢ ,85,3) (3.13)

where €' isthe i unit vector in R™. It is then straightforward to show that (3.13) is an
%—approxi mate solution of (3.11) for the parameter 1°, so we can start the interior -

point method with (3.13). We next bound the vaue of the parameter ¢ when the
stopping criterion is achieved. Let (X,S,Z,zz) denote the vaues of (x,s,z, 1) when the
algorithm stops. To keep the analysis simple, we assume that the stopping criterion is met

exactly. We therefore have that: %mﬁ >g=z(b — AX)=2S which leads to the ratio
0 8mS-a
bound: £ < :

n o (4l5)Es
However, noting that:



b —AX>b +6 —g=b +6 —&5 >b -Ax*-£5 =5 —-&5, we obtan
° _10m1l+z)_42m

S

s* <(1+#)s , and substituting this into the ratio bound yields: 2 < <
)7 £ £
0 0
so In”—sln@ and so (2+4\/ﬁ)lnﬂ—s(2+4\/a)ln42—m, using £<0.1, 5:411
)7 £ )7 £ .

and Theorem 1.

Proposition 3.6 Let £ (0,0.1) begiven, m>3 and set E:4i1. Suppose that x? isan

S ::—é—approxi mate analytic center of S. Then starting with x*, the stopping criterion of
each linear program in Step 2 of method will be reached in no more than

[(2 + M)I n 6_m} iterations of Newton’s method.
&

Proof. The proof is and ogous with proposition 3.6.

Proposition 3.7 Let ¢ €(0,0.1) be given and set 5:411. Suppose that x? is an ﬂ::—é—

approximate analytic center of S. Then starting with x* and using a standard feasible
interior - point method to solve each of the linear programs in Steps 1 and 2, the method
will compute an ¢-approximate symmetry point of S in no more than

rr{(Z + M)In@} + [(2 + M)In6—m} total iterations of Newton’s method.
& &

Proof. The propositions 3.3 and 3.4 show that the method indeed computes an ¢ -
approximate symmetry point of S. From the propositions 3.5 and 3.6 it foll ows that the
total number of Newton steps computed by the method is no more than

n{(2+4«/ﬁ)ln@}+[(2+4«/ﬁ)ln6—m} since m>n+1>3 and ¢ €(0,0.1).
& &
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